If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+64x+8=0
a = 1; b = 64; c = +8;
Δ = b2-4ac
Δ = 642-4·1·8
Δ = 4064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4064}=\sqrt{16*254}=\sqrt{16}*\sqrt{254}=4\sqrt{254}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-4\sqrt{254}}{2*1}=\frac{-64-4\sqrt{254}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+4\sqrt{254}}{2*1}=\frac{-64+4\sqrt{254}}{2} $
| 1.2*x=30 | | 2/y+4y=5 | | 2e/5+3=4e+1 | | 0.02(x)+0.4(3x)=1200 | | 8x^2+3x+1=08x2+3x+1=0 | | 4(b-7)=2(b+3) | | p/5+8=19 | | 3x^2-7x+4=19 | | 3x²-24x+21=0 | | 2x²-21x-36=0 | | 4n=n+29 | | 4/3X=7-3/x | | -4y^2=-60 | | -4y^2=-64 | | 1x+61=12 | | 37,7x6,09=0,86 | | 6(x+11)=30 | | 37,7/x=0,86 | | 37,7x(x)=0,86 | | 37,7(x)=0,86 | | 0/0=a | | 846386543*2637827683567834*73457347857394*x=4987357893469784*34675678468*78635463646-837958794978697864+98375873748967943666 | | 6(3u+1)-1/2=7/10 | | 2+x/4=4 | | 3568*6346+723895*(4358/x)=46837538-2378645+8294546 | | 2^(n)=10000 | | 2/x=48/3 | | (x3)(x2)=42 | | v^2+5=30 | | F(x)=(2x-3)/(4x-5) | | 10•(5+5x)-8x=155 | | 2x+1=5.5x-1= |